Eisenhauer, N. The shape that matters: how important is biodiversity for ecosystem functioning?. Sci. China Life Sci. (2021). https://doi.org/10.1007/s11427-021-2052-5

Eisenhauer, N., Weigelt A., 2021 Ecosystem effects of environmental extremes, Science, 374 (6574): 1442-1443. https://doi.org/10.1126/science.abn1406

Schielzeth, H., and Wolf, J. B. W.. 2021. Community genomics: a community-wide perspective on within-species genetic diversity. American Journal of Botany 108(11): 1– 4. https://doi.org/10.1002/ajb2.1796

Hutengs C., Eisenhauer N., Schädler M., Lochner A., Seidel M., Vohland M. (2021). VNIR and MIR spectroscopy of PLFA-derived soil microbial properties and associated soil physicochemical characteristics in an experimental plant diversity gradient. Soil Biology and Biochemistry, 160. https://doi.org/10.1016/j.soilbio.2021.108319

Schmid, M. W., van Moorsel, S. J., Hahl, T., De Luca, E., De Deyn, G. B., Wagg, C., Niklaus, P. A., & Schmid, B. (2021). Effects of plant community history, soil legacy and plant diversity on soil microbial communities. Journal of Ecology, 109, 3007– 3023. https://doi.org/10.1111/1365-2745.13714
Data availability: The data presented in this paper are publicly available on Zenodo https://doi.org/10.5281/zenodo.4596692 (Schmid et al., 2020) and with the NCBI Sequence Read Archive (accession number PRJNA639013).

Prommer, J., Walker, T., Wanek, W., Braun, J., Zezula, D., Hu, Y., Hofhansl, F., & Richter, A. (2020). Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global change biology, 26(2), 669–681. https://doi.org/10.1111/gcb.14777

Venjakob, C., Ruedenauer, F.A., Klein, A.-M. and Leonhardt, S.D. (2021), Variation in nectar quality across 34 grassland plant species. Plant Biol J. https://doi.org/10.1111/plb.13343
Data availability:

van Moorsel, S. J., Hahl, T., Petchey, O. L., Ebeling, A., Eisenhauer, N., Schmid, B., and Wagg, C.. 2021. Co-occurrence history increases ecosystem stability and resilience in experimental plant communities. Ecology 102( 1):e03205. 10.1002/ecy.3205

Lange, M, Roth, V-N, Eisenhauer, N, et al. Plant diversity enhances production and downward transport of biodegradable dissolved organic matter. J Ecol. 2021; 109: 1284–1297. https://doi.org/10.1111/1365-2745.13556
Data availability:
Data on DOM concentration and soil organic carbon contents are available at https://doi.org/10.17617/3.52 (Lange, 2020). Data on molecular DOM properties are available at https://doi.org/10.17617/3.28 (Lange, 2019). Soil texture data are available at https://doi.org/10.1594/PANGAEA.885439 (Kreutziger et al., 2018). Microbial respiration data are available at https://doi.pangaea.de/10.1594/PANGAEA.854694 (Strecker et al., 2015). Root standing biomass from 2011 at https://doi.org/10.1594/PANGAEA.880330 (Bessler et al., 2017) and from 2014 at https://doi.pangaea.de/10.1594/PANGAEA.880324 (Oram et al., 2017).

Oelmann, Y., Lange, M., Leimer, S. et al. Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nat Commun12, 4431 (2021). https://doi.org/10.1038/s41467-021-24714-4

Dietrich, P., Cesarz, S., Liu, T. et al. Effects of plant species diversity on nematode community composition and diversity in a long-term biodiversity experiment. Oecologia (2021). https://doi.org/10.1007/s00442-021-04956-1
Data availability: https://doi.org/10.5061/dryad.qrfj6q5fn

Roeder, A, Schweingruber, FH, Ebeling, A, Eisenhauer, N, Fischer, M, Roscher, C. Plant diversity effects on plant longevity and their relationships to population stability in experimental grasslands. J Ecol. 2021; 00: 1– 14. https://doi.org/10.1111/1365-2745.13661
Data availability:
Age data: https://doi.org/10.5061/dryad.rfj6q579f
Leaf trait data: https://doi.org/10.5061/dryad.4k03n
Biomass time-series data https://doi.org/10.1594/PANGAEA.866358 Data on species-specific vegetation cover: https://doi.org/10.1594/PANGAEA.865275

Dietrich, P, Eisenhauer, N, Otto, P, Roscher, C. Plant history and soil history jointly influence the selection environment for plant species in a long-term grassland biodiversity experiment. Ecol Evol. 2021; 11: 8156– 8169. https://doi.org/10.1002/ece3.7647
Data availability: https://doi.org/10.5061/dryad.qrfj6q5fn

Wang, S., Loreau, M., de Mazancourt, C., Isbell, F., Beierkuhnlein, C., Connolly, J., Deutschman, D. H., Doležal, J., Eisenhauer, N., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Lepš, J., Polley, H. W., Reich, P. B., van Ruijven, J., Schmid, B., Tilman, D., Wilsey, B., and Craven, D.. 2021. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology 102( 6):e03332. https://doi.org/10.1002/ecy.3332
Data availability: Data are in the “Supporting Information” session https://doi.org/10.1002/ecy.3332

Strecker, T, Jesch, A, Bachmann, D, et al. Incorporation of mineral nitrogen into the soil food web as affected by plant community composition. Ecol Evol. 2021; 00: 1– 15. https://doi.org/10.1002/ece3.7325
Data availability: https://doi.org/10.1594/PANGAEA.930883s

Marr, S., Hageman, J.A., Wehrens, R. et al. LC-MS based plant metabolic profiles of thirteen grassland species grown in diverse neighbourhoods. Sci Data 8, 52 (2021). https://doi.org/10.1038/s41597-021-00836-8
Data availability:
https://www.ebi.ac.uk/metabolights/MTBLS679/protocols (data)
https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-021-00836-8/MediaObjects/41597_2021_836_MOESM1_ESM.pdf (code)

Guimarães‐Steinicke, C, Weigelt, A, Proulx, R, et al. Biodiversity facets affect community surface temperature via 3D canopy structure in grassland communities. J Ecol. 2021; 00: 1– 17. https://doi.org/10.1111/1365‐2745.13631
Data availability: https://doi.org/10.5061/dryad.866t1g1q1